If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x+1=0
a = 4; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·4·1
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{6}}{2*4}=\frac{-20-8\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{6}}{2*4}=\frac{-20+8\sqrt{6}}{8} $
| (3x+6)(9x-4)(3x-4)=0 | | 1.5x=22+.5x | | 21-9=x | | 3/1=1/y | | 16t+1.5t^2=-140 | | 3/4c=1 | | 9+m/7=16 | | 6x+12=3x−8 | | -7k-63=-5k-45 | | 1.5t^2+16t+140=0 | | 12d-84=1=0 | | 7y-5=23+3y | | V^2-v+2=0 | | c/3-4=11 | | 10-(3n)=25 | | p^2+8p-31=0 | | 5y2+3y–4=0 | | 6(5-3Y)=4(25=2y) | | 4x^2-33x+30=0 | | -6(-2+7n)=12+2n | | 5(r-4)1.06=45.05 | | 8x-3(2x-4=3(x-6) | | 72*c=18 | | 5x^2-20x+35=30 | | -4+5r=r+4 | | -5.1=x/5+7.4 | | (9x-11)+(13x-7)=7x | | 1+3w=14 | | A(n)=4+(n-1)(-2) | | -2-8(1+6n)=-250 | | -3x^2-24x+17=40 | | 2.5=-16t^2+2t |