If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-72=0
a = 4; b = 16; c = -72;
Δ = b2-4ac
Δ = 162-4·4·(-72)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{22}}{2*4}=\frac{-16-8\sqrt{22}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{22}}{2*4}=\frac{-16+8\sqrt{22}}{8} $
| 6b-8(4b-9)+3b=0 | | 29y+5y-15=7y | | x=0.7x+480000 | | 992x-1)=3(x+2)+3x | | 0.6d=18 | | |6x-21|=15 | | 6y-5=12y+49 | | 3(4x-4)=4(2x+6) | | 2.1x-5.17=6.8 | | 2-7x+4/7=-2/7 | | 16+4x=84-4x | | 40-2x+5x=68+x | | 9m=6=96m= | | 9x+3.3x-18=0 | | t(10-2.5t)=48 | | t·(10-2.5t)=48 | | x^2-0.8x+0.12=0 | | 1-16x+2x²=0 | | x(10-2.5x)=48 | | -254×x=-3556 | | x/(-15)=-7 | | 20x²-2x+5=0 | | 36/x=-4 | | x+(-17)=51 | | -243×x=-6075 | | X+2y-290=0 | | x/(-15)=-8 | | n^2-3n-44=0. | | 4p^2-5p=1 | | y2=+2y2 | | y2=2y2 | | 5x+-7=-3x+9 |