If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+24w=0
a = 4; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·4·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*4}=\frac{-48}{8} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*4}=\frac{0}{8} =0 $
| 9x+4=4x+2 | | 3+4(x-5)=27 | | 7+12x=67 | | -7=7(v-4)-4v | | 10x+7=2x+47 | | 16x2+60x-60=0 | | 19w=3135 | | -20=5yy= | | 18=n-14 | | 15x-1=65x-36 | | 3u+4(u+8)=-17 | | 5(2x-1)+3x=4 | | -13y-6=-6-13 | | 4a-3(a-2=2(3a-2) | | 16=2(3x-4) | | 11x-65=x | | 2^x+1+2^x+2=48 | | 2x+1+2x+2=48 | | (9x^2)+15=0 | | d=16(12.5^2) | | 5x-1=8x-55 | | 4=10.24/v | | 3/10=9/10g | | 15n=12n=100 | | 8x9=5x=3 | | 79-w=180 | | 9x-25=106 | | -8u+8=0 | | -19.8=-2.3-w/7 | | 4x-9+7x-3=180 | | 19+n=30n= | | 9x+14=-717x+256 |