If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+60x-60=0
a = 16; b = 60; c = -60;
Δ = b2-4ac
Δ = 602-4·16·(-60)
Δ = 7440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7440}=\sqrt{16*465}=\sqrt{16}*\sqrt{465}=4\sqrt{465}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{465}}{2*16}=\frac{-60-4\sqrt{465}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{465}}{2*16}=\frac{-60+4\sqrt{465}}{32} $
| 19w=3135 | | -20=5yy= | | 18=n-14 | | 15x-1=65x-36 | | 3u+4(u+8)=-17 | | 5(2x-1)+3x=4 | | -13y-6=-6-13 | | 4a-3(a-2=2(3a-2) | | 16=2(3x-4) | | 11x-65=x | | 2^x+1+2^x+2=48 | | 2x+1+2x+2=48 | | (9x^2)+15=0 | | d=16(12.5^2) | | 5x-1=8x-55 | | 4=10.24/v | | 3/10=9/10g | | 15n=12n=100 | | 8x9=5x=3 | | 79-w=180 | | 9x-25=106 | | -8u+8=0 | | -19.8=-2.3-w/7 | | 4x-9+7x-3=180 | | 19+n=30n= | | 9x+14=-717x+256 | | 6(x+3)-6=57-3x | | -2y+5(y+2)=13 | | -3x-5(2x+1)=21 | | 3x=2(x+21) | | 2/3(2x-1)+2/1/3=7+1/2x | | 163-x=209 |