If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u(2u+7)=0
We multiply parentheses
8u^2+28u=0
a = 8; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·8·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*8}=\frac{-56}{16} =-3+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*8}=\frac{0}{16} =0 $
| 13v-9v=16 | | c+35=57;c=32 | | (2x-6)(3x=5) | | 20x-9=-2+11x | | 12(6)=8x | | x/2=-0.60 | | 18(14)=27x | | 129+x+81=180 | | 15(12)=10x | | u/5+6=12 | | 8(14)=7x | | 12(10)=8x | | -3m+18=14 | | y−20=–3 | | -(x-2(3-x)-2)=2 | | 2v+3=-3 | | 16(15)=10x | | B=4x+38,A=8x+6 | | 8x10=2(4x+5) | | 7(16)=8x | | 20−6(5+2x)=10−2x | | 4b+280=500 | | 8(15)=12x | | 2+6p=14 | | 8r+9=9 | | 8x10=2(4x-5) | | 206.82=6(0.07m+24.70+0.20(24.70) | | 15x+18x-13x=69 | | 2x-13=2x-4 | | 3(2)^x=24 | | 24x=13x-2 | | r=-3/56÷(-6/7) |