If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-36=0
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $
| 15x-15=16x-16 | | 7*x+12=36 | | 4(x+2)+6(x-4)=24 | | 1.05x=x+0.5 | | 4x/2+8/2=6 | | 10v2=9v-6 | | X+.5x=34.5 | | 63=9*a-27 | | y/5+16=9 | | 10a2-10a=16 | | 1=-99+x | | 36^3x+1=121 | | 4x^2–12x=7 | | −3(23x+6)=−26-323x+6=-26 | | 3*x-8=28 | | 8=1/3k | | 37/15=x/25 | | 2x2-4x=3 | | 9-5a+2a=1-5a | | 32x^2-24x-15=0 | | 2x2-4x=÷ | | (5x+10)+(6x+5)=180° | | y/5+11=6 | | 3/5+x=0 | | 4x+6x=16 | | 9y+y=9y*2 | | 0,1x-20=30 | | 4m–8=12 | | 3^(24x+23)=0 | | 3^24x+23=0 | | 2(x-4)+x=10 | | 16x^2+1=7× |