If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2-10a=16
We move all terms to the left:
10a^2-10a-(16)=0
a = 10; b = -10; c = -16;
Δ = b2-4ac
Δ = -102-4·10·(-16)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{185}}{2*10}=\frac{10-2\sqrt{185}}{20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{185}}{2*10}=\frac{10+2\sqrt{185}}{20} $
| 1=-99+x | | 36^3x+1=121 | | 4x^2–12x=7 | | −3(23x+6)=−26-323x+6=-26 | | 3*x-8=28 | | 8=1/3k | | 37/15=x/25 | | 2x2-4x=3 | | 9-5a+2a=1-5a | | 32x^2-24x-15=0 | | 2x2-4x=÷ | | (5x+10)+(6x+5)=180° | | y/5+11=6 | | 3/5+x=0 | | 4x+6x=16 | | 9y+y=9y*2 | | 0,1x-20=30 | | 4m–8=12 | | 3^(24x+23)=0 | | 3^24x+23=0 | | 2(x-4)+x=10 | | 16x^2+1=7× | | 16x-24=8(2x-30 | | 7x/3+4/3=2x-1 | | 8b2+6=-56 | | y/9+14=8 | | 700=-1/3x+1.5 | | 8k=20+9k | | 6-3x=21x | | (3)/(5)(x-19)=-15 | | 7(r-88)=42 | | 23=z15 |