If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r+2.25r+14=5r-3/4r+1-3
We move all terms to the left:
4r+2.25r+14-(5r-3/4r+1-3)=0
Domain of the equation: 4r+1-3)!=0We add all the numbers together, and all the variables
We move all terms containing r to the left, all other terms to the right
4r-3)!=-1
r∈R
4r+2.25r-(5r-3/4r-2)+14=0
We add all the numbers together, and all the variables
6.25r-(5r-3/4r-2)+14=0
We get rid of parentheses
6.25r-5r+3/4r+2+14=0
We multiply all the terms by the denominator
(6.25r)*4r-5r*4r+2*4r+14*4r+3=0
We add all the numbers together, and all the variables
(+6.25r)*4r-5r*4r+2*4r+14*4r+3=0
We multiply parentheses
24r^2-5r*4r+2*4r+14*4r+3=0
Wy multiply elements
24r^2-20r^2+8r+56r+3=0
We add all the numbers together, and all the variables
4r^2+64r+3=0
a = 4; b = 64; c = +3;
Δ = b2-4ac
Δ = 642-4·4·3
Δ = 4048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4048}=\sqrt{16*253}=\sqrt{16}*\sqrt{253}=4\sqrt{253}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-4\sqrt{253}}{2*4}=\frac{-64-4\sqrt{253}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+4\sqrt{253}}{2*4}=\frac{-64+4\sqrt{253}}{8} $
| 725=475+25x | | 3/2x+5=9/4x-11 | | 17z=0 | | 8x-3*(2+5x)=2*(7-x) | | -2x-147=123+7x | | 3b-b+14=26 | | (8y-43)+(39)=180 | | (8y-43)(39)=180 | | -12-3b=-4b | | 2p÷5-1,4=-0,4+5 | | 24.50+22.00=x+18.25+47.00 | | 4x+5x-10=688 | | 0=a/13 | | -10x-36=-12x+18 | | 28=10+2v | | 9(x-2)/6=6(x+2)/12 | | 4+4x+2x+3=4x+11 | | (3x+15)=(8x-5) | | 6n=-7n-5n | | -10x-11=-12x+21 | | 3(x+-1)=5x-6 | | 4-3q=2q-11 | | (5x+7)(3x+23)=100 | | 5a-(3a-10)=4a | | 1200x+100=3230+190x | | -6-17+17m=-3+16m | | 150m-125m+38200=41000-175m | | 1/3(8r+12)=3+2r | | 4r+9/4r-5r+2+14+3/44=0 | | 2.6+10m=8.38 | | 0.04(2t-5)=0.08(t+3)-0.44 | | 4r+9/4r+14=5r-3/44+1-3 |