If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2=36
We move all terms to the left:
4q^2-(36)=0
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $
| 2(-2z+3)=-2(3z+2) | | 6b-2/3=1/2 | | 2n+1/2=3/2 | | 4^x+1=30 | | 2(3w+7)=5(w+8) | | 2(3w+7)=5(w+8 | | 5(5n+6)=80 | | 3(3v+9)=54 | | 6m+1=2m−4 | | 6x+1=2x−4 | | /d3-10=-2 | | 8m+3=6m-4 | | 10*x+1500=20*(x+15) | | 3(2x+1)=7=6x-3-2(2-4x) | | 300=6x+(x-4)+x | | 302=3x+(x-4)+x | | /2525w=-4 | | 9m+2=8m-10 | | 7-2x-4=11-4X+1 | | 9m-1=6m+10 | | X+2x+10+3x-40+4x+20=360 | | X+(2x+10)+(3x-10)+(4x+20)=360 | | 9-4x=2x+37 | | X²+9x+13)=-7 | | 8-4x=24-8x | | x+(3x/8)=11 | | X²+5x=14 | | -4m-7=8 | | 165=2x+(x+5)+x | | p^2-10p=35 | | 3x-22=4*(x-5) | | X2+204x+1260=0 |