If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+4n-366=0
a = 4; b = 4; c = -366;
Δ = b2-4ac
Δ = 42-4·4·(-366)
Δ = 5872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5872}=\sqrt{16*367}=\sqrt{16}*\sqrt{367}=4\sqrt{367}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{367}}{2*4}=\frac{-4-4\sqrt{367}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{367}}{2*4}=\frac{-4+4\sqrt{367}}{8} $
| x-(0,041x)=1176,4 | | 6x-17=-29 | | x+(0,055x)=5459 | | x2-4=16 | | x+0,055x=5459 | | 10x=5(2x-1) | | x+x+(x/2)+(x/3)-1=100 | | 4s+17=121 | | a/3=4=14 | | 1.2(h-2)=2h-1.2 | | (25n+15)=90 | | (25n+15)=99 | | 5r-5=56 | | 7x+5=3x=9 | | 2,5+2=3+2x | | 8x−8=8 | | 3p=11+4 | | 1/2x+2-3/2x=21-2+x | | 2/3z-5=3 | | 2x÷x=90 | | 2y+20=-12 | | 2/5z-5=3 | | 5^(4x-4)=35 | | X-0.1x=480 | | 15(x+4)-12x=1260 | | x+(x-1)=-11 | | (3)10x-3=x+3 | | (7)5-6z=9z+5 | | (3b+1)²=9b²-2 | | 7)5-6z=9z+5 | | 11y-4=5y+28 | | (90-k)=4k |