If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+.10m-5=0
a = 4; b = .10; c = -5;
Δ = b2-4ac
Δ = .102-4·4·(-5)
Δ = 80.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(.10)-\sqrt{80.01}}{2*4}=\frac{-0.1-\sqrt{80.01}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(.10)+\sqrt{80.01}}{2*4}=\frac{-0.1+\sqrt{80.01}}{8} $
| 3a+8.60-a.4a-38=180 | | (2x+1)2+3x=-2 | | (2x+1)2+3x=2 | | 13t+3=19 | | (2x-3)2=6-5x | | (x+2)2-5x=6 | | 3x2-4(x+1)=-3x | | 2x2-5(x-1)=2 | | 3x2+13x=8(x+1) | | 2x2+10x=6(x+1) | | 3x2+7x=5(x+1) | | 2.5x+5x=90 | | 11x-5=-60 | | 45/105=x/200 | | x2-12x+27=- | | 8(-4.25)-8y=-50 | | 10u+16=180 | | 2x2-5x+2=- | | Y=0.9x-5 | | 2e+20=50 | | -x+9.1=-9.1 | | -8.5-x=-10.1 | | n(180(n-2))=n(360+108n) | | P=5-6x6+5 | | x+18=10x-90 | | 2(4x-2)+5=-8x+9 | | 8w+3=3w-12 | | -5e-4=21 | | 8(b-2)=20 | | 2(b-8)=20 | | 7y=189 | | 3(n+7)=49 |