4a+a+a(a-5)=30

Simple and best practice solution for 4a+a+a(a-5)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4a+a+a(a-5)=30 equation:



4a+a+a(a-5)=30
We move all terms to the left:
4a+a+a(a-5)-(30)=0
We add all the numbers together, and all the variables
5a+a(a-5)-30=0
We multiply parentheses
a^2+5a-5a-30=0
We add all the numbers together, and all the variables
a^2-30=0
a = 1; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·1·(-30)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*1}=\frac{0-2\sqrt{30}}{2} =-\frac{2\sqrt{30}}{2} =-\sqrt{30} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*1}=\frac{0+2\sqrt{30}}{2} =\frac{2\sqrt{30}}{2} =\sqrt{30} $

See similar equations:

| 15×(7x20)/15-14=1 | | u9–1=1 | | m/5+3=8/5 | | u9–14=1 | | -5/6x+2=1/3x-5 | | 16=-16t^2+256t | | 8x-4+3x=7 | | 4x+-40=180 | | 3(5x+10)+10=x-(x+10) | | 3/4=m+1/4 | | c-16=11 | | 2(x+3)=(4x+7) | | 2y=122/3 | | 4x+4=6x-3 | | -6=9x+1 | | 6p+4=4p-8 | | 20/8.40=5/x | | x+55=200 | | 0.9x+5.4=14.4 | | 8x+29=69 | | 10k-1=109 | | 2x-38=4(-x+1 | | 2(x+7.00)=44.00 | | 4x+30=60 | | x-413.39=91.55 | | x-$413.39=$91.55 | | -25-7k=-3(3-k)-8k | | 1/4(x+4)-1/20(x-60)=x+15 | | 206x+618=1,030 | | 8x+40=160 | | 3x^2+17x=-3x+7 | | 8.1x=121.5 |

Equations solver categories