If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-4=0
a = 49; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·49·(-4)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*49}=\frac{-28}{98} =-2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*49}=\frac{28}{98} =2/7 $
| -9x+8=62 | | 2+1x-3x=18 | | 1/4(3x-6)+1/4x=151/3 | | -8n+4{1+5n}=-6n-14 | | y=0.3-5 | | 14z-13z-z+3z+z=20 | | 1/2(4x-8)+3x=39 | | 2x^2-7=38 | | 70+5(x+1)=90 | | 18j-16j+4j-4j=8 | | 10^x+9=4^2x | | (x-2)=(3x+4)/3 | | 10^10+9=4^2x | | |4-2x|+5=16 | | h/0.07=4.9 | | 5x÷6+3=13 | | 1.25m=25 | | 2x+9=5x=4 | | 6h+2h-6h=18 | | a*1/3+3/1/3=3 | | 7+3x=4.5x-8 | | 1/9a+4=-21 | | 13w-12w+2w+4w=14 | | -1/2+2y=7 | | 5x-1=3x^2+9x | | 5x+4/7=7x-2/3 | | 1/7q+7=+12 | | (5x/2)+5=26 | | 2.3x-1.47=6.85+0.7x | | -2x2-6x+6=0 | | 4^6-^9x=4^10x-1 | | 3b+13=5b-3 |