If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2-4=0
a = 49; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·49·(-4)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*49}=\frac{-28}{98} =-2/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*49}=\frac{28}{98} =2/7 $
| 8-20=x | | 4(4+2x)=3(3+3x+1) | | 3(2x+5)-10=2x+37 | | C=(5x+20) | | 60+x+60+72=180 | | m/6+10=4 | | 7m=5+6m | | x+6/x-3=20 | | 3+4y+20=31 | | 12=4m=4m+5 | | 2(5n+4)= | | 2/3x+1/5x=2/3x | | B=(10x-30) | | 11s−10s=2 | | 6x+x=95 | | -5v=3v+8 | | 5p−p+–10p−4p=–20 | | 5(x+6)-16=34 | | 4x+31x-2=7(5x+6) | | 18=2x-4;x= | | 2+6x+40+90=180 | | m+m+m+m-5=3m+10 | | 6b+1=47 | | 12+7n=1-4n | | 15x-(13x-10)=X=x-14 | | ⅓+(x-20)(x-10)+40=360 | | −3x2+16x+9= −2x−2x | | 1-p/4=3 | | 5p−p+–10p−–4p=–20 | | 4(2x-5)+7=8x+4 | | 9x-9=14x+5 | | 2(1-6b)=10-4b |