48-(3x+4)=4(x+5)x

Simple and best practice solution for 48-(3x+4)=4(x+5)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 48-(3x+4)=4(x+5)x equation:



48-(3x+4)=4(x+5)x
We move all terms to the left:
48-(3x+4)-(4(x+5)x)=0
We get rid of parentheses
-3x-(4(x+5)x)-4+48=0
We calculate terms in parentheses: -(4(x+5)x), so:
4(x+5)x
We multiply parentheses
4x^2+20x
Back to the equation:
-(4x^2+20x)
We add all the numbers together, and all the variables
-3x-(4x^2+20x)+44=0
We get rid of parentheses
-4x^2-3x-20x+44=0
We add all the numbers together, and all the variables
-4x^2-23x+44=0
a = -4; b = -23; c = +44;
Δ = b2-4ac
Δ = -232-4·(-4)·44
Δ = 1233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1233}=\sqrt{9*137}=\sqrt{9}*\sqrt{137}=3\sqrt{137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-3\sqrt{137}}{2*-4}=\frac{23-3\sqrt{137}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+3\sqrt{137}}{2*-4}=\frac{23+3\sqrt{137}}{-8} $

See similar equations:

| 4x+12=224 | | 20+5.50h=15+6. | | 2x-9=-3x+4 | | M^2-9m=53 | | 6x^2-40x-24=0 | | -d+11-4d-9d=-17 | | 3/k=7.5 | | (8x-5)+(x+5)=180 | | x+52-4x+140=180 | | -u+273=201 | | 201=126-y | | 2(81-4.5y)+9=162 | | -13-4x=x-11 | | 3(x1)-5=5x-2 | | 3x-9=1/2x+12 | | 7+(4k+3)=14 | | 46x-46=32 | | 17+3(z+-2)+-11z=-7(z+2)+14 | | 4m+4-48+42m=32 | | 15x2=3x+10 | | 2-15x=7/8x | | 7x+44=-33 | | -4.9x^2+2x+850=0 | | 20(2z-10)=10 | | s/7=-1 | | 6c=18c | | 2x+13+3x-23=90 | | 8x-10+10x-20=180 | | 0=5x-26 | | 3w+6(w+7)=-12 | | 5(x-2)=-12 | | 42+104+x+9=180 |

Equations solver categories