48-(3c+4)=4(c+5)c

Simple and best practice solution for 48-(3c+4)=4(c+5)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 48-(3c+4)=4(c+5)c equation:



48-(3c+4)=4(c+5)c
We move all terms to the left:
48-(3c+4)-(4(c+5)c)=0
We get rid of parentheses
-3c-(4(c+5)c)-4+48=0
We calculate terms in parentheses: -(4(c+5)c), so:
4(c+5)c
We multiply parentheses
4c^2+20c
Back to the equation:
-(4c^2+20c)
We add all the numbers together, and all the variables
-3c-(4c^2+20c)+44=0
We get rid of parentheses
-4c^2-3c-20c+44=0
We add all the numbers together, and all the variables
-4c^2-23c+44=0
a = -4; b = -23; c = +44;
Δ = b2-4ac
Δ = -232-4·(-4)·44
Δ = 1233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1233}=\sqrt{9*137}=\sqrt{9}*\sqrt{137}=3\sqrt{137}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-3\sqrt{137}}{2*-4}=\frac{23-3\sqrt{137}}{-8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+3\sqrt{137}}{2*-4}=\frac{23+3\sqrt{137}}{-8} $

See similar equations:

| 1/2n+16=4-2/3n | | (7/12)x=105 | | 12.78+0.06(x+3)=13.53-0.12 | | 91=7(g+3) | | 70.8=6(m+3.6) | | 6x-5(-3x-10)=-97 | | X=9y=31.5 | | -42=5(2c+9)-4(c+8) | | 0.9-2x=0.3 | | 14/3=y/9 | | 3(p-73)=45 | | 19m−4m+5=22 | | 12x+5=24 | | s7/2s+10=64 | | 50+.25x=45+.30x | | 7y=27-55 | | 2(z+37)=-10 | | 33+0.33r=0.99r | | 14p+3-8=6p+29 | | x/8-x/16+2=x+2 | | 3x+18=14x | | -2/3x-6=16 | | X=3+6=9y=10.5+21=31.5 | | 13.02+0.12(x+3)=13.52-0.09 | | 3|7x|+4=22 | | 36+6h=72 | | 7x14=3x | | 7-3m=61 | | 59+90+x=180 | | x/19+2/3=7/3 | | X=369y=10.52131.5 | | x2+12x=-5 |

Equations solver categories