47/8x+12=9+4x

Simple and best practice solution for 47/8x+12=9+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 47/8x+12=9+4x equation:



47/8x+12=9+4x
We move all terms to the left:
47/8x+12-(9+4x)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
47/8x-(4x+9)+12=0
We get rid of parentheses
47/8x-4x-9+12=0
We multiply all the terms by the denominator
-4x*8x-9*8x+12*8x+47=0
Wy multiply elements
-32x^2-72x+96x+47=0
We add all the numbers together, and all the variables
-32x^2+24x+47=0
a = -32; b = 24; c = +47;
Δ = b2-4ac
Δ = 242-4·(-32)·47
Δ = 6592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6592}=\sqrt{64*103}=\sqrt{64}*\sqrt{103}=8\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{103}}{2*-32}=\frac{-24-8\sqrt{103}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{103}}{2*-32}=\frac{-24+8\sqrt{103}}{-64} $

See similar equations:

| -83=5(1+4x)=2x | | 3x=7.20 | | 1+3(-5+4z)=6z-2 | | 7h-4h-2h=18 | | 4x-9-5x=-3 | | 3+7x=-4x+113 | | 6j+3j-5j-3j=5 | | 19-3n=7n+13 | | 0.25x+7=4(x2) | | 5j+4j-8j-1=11 | | 17b=204 | | 5m-m-3m=14 | | m+1/2=5/7 | | 11=2.2b | | 14j-12j-j=6 | | 18x-45=13x+70 | | 45=~9(e+8) | | 5a+4=-31 | | 14j−12j−j=6 | | 3(-10+7x=33 | | 5x=14+39 | | -3x+3/5+x=7/45 | | 6v=3v-5v-v-2=16 | | 12x=4x-72 | | 0.4x=15=x-6 | | (5x-22)=(4x+14) | | 19j-4j-3j=20 | | 17b-9b-6b+3b=15 | | -5(4x+1)+5x=70 | | 8v=6v+24 | | 6j-3j+j+j=20 | | 12x-(9x-8)=17 |

Equations solver categories