If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x+x2=2079
We move all terms to the left:
45x+x2-(2079)=0
We add all the numbers together, and all the variables
x^2+45x-2079=0
a = 1; b = 45; c = -2079;
Δ = b2-4ac
Δ = 452-4·1·(-2079)
Δ = 10341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10341}=\sqrt{9*1149}=\sqrt{9}*\sqrt{1149}=3\sqrt{1149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{1149}}{2*1}=\frac{-45-3\sqrt{1149}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{1149}}{2*1}=\frac{-45+3\sqrt{1149}}{2} $
| 3x+4-9x=-2-6x | | -199=-7-12-(13+3b) | | -11+6(1+2m)=-161 | | -217=-10-9(14-3x) | | -13+12(14n+13)=-631 | | -200=12(10-2x)-8 | | -5(1-6r)=265 | | 8e=20 | | 656=7(1-8v)-3v | | 28+5n=40 | | 2*10+x=3 | | 1776=12(6-11r) | | 12u-9=16 | | 12u-9=6 | | (5+3)x=8-5x | | 2x-15,2=4x-20,4 | | Y=4x+3x1 | | 10(2x+72)=700 | | 5(3.2+5x)=5(8.2x) | | 9.5(2x-32)=20x | | y=3/72-13 | | 8r^2=32r=0 | | 5n^2+160-60n=0 | | 5x/4+2=8x/23 | | F(x)=-6/x+9 | | 12-3x+42=2x-3x | | 5(4.2-2x)=11x | | 5.2x+4=1.2x-4 | | 17x+64=24x-6 | | 17x+64=24-6 | | 9x-4=8x-12 | | 37x+40=32+29x |