If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43(x+15)3x=180
We move all terms to the left:
43(x+15)3x-(180)=0
We multiply parentheses
129x^2+1935x-180=0
a = 129; b = 1935; c = -180;
Δ = b2-4ac
Δ = 19352-4·129·(-180)
Δ = 3837105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3837105}=\sqrt{9*426345}=\sqrt{9}*\sqrt{426345}=3\sqrt{426345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1935)-3\sqrt{426345}}{2*129}=\frac{-1935-3\sqrt{426345}}{258} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1935)+3\sqrt{426345}}{2*129}=\frac{-1935+3\sqrt{426345}}{258} $
| 0,12x+54-0,3x=45 | | 5n-63=155 | | 2x+6°=38 | | 7x+10=6x5 | | -2(x+1)2=-98 | | 38+80+95+x=90 | | 18-3k+9(k=4) | | −3x−16=14 | | 7−8h=–10+9h | | 1.8m=11.16 | | x/14=2 | | 10−3d=–8d | | 3(11d–12)–8=–11 | | -5d+22=32 | | 2x+3(x-2)=7x+34. | | 9x-16+7×-5+3×+11=180 | | 4x+8-2x-10= | | (3q–1)=(q+4) | | 207=6x-3(6x+11 | | –2=r–4 | | m34-34=093+23-2 | | –6(y+5)–24=66 | | 900=3.14•r^2•10/3 | | X÷2-2x÷5=5÷24 | | 14=−7x+21 | | (9y+7)+(2y+98)=y | | 4(2x+3/4)=43 | | -9x-30=51 | | -2x+60=130 | | 3^2x-5(3^x)=50 | | b-11+3(b+5)=7 | | 3^2x-5*3^x=50 |