If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400+1/2x=50+6x
We move all terms to the left:
400+1/2x-(50+6x)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x-(6x+50)+400=0
We get rid of parentheses
1/2x-6x-50+400=0
We multiply all the terms by the denominator
-6x*2x-50*2x+400*2x+1=0
Wy multiply elements
-12x^2-100x+800x+1=0
We add all the numbers together, and all the variables
-12x^2+700x+1=0
a = -12; b = 700; c = +1;
Δ = b2-4ac
Δ = 7002-4·(-12)·1
Δ = 490048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{490048}=\sqrt{64*7657}=\sqrt{64}*\sqrt{7657}=8\sqrt{7657}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(700)-8\sqrt{7657}}{2*-12}=\frac{-700-8\sqrt{7657}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(700)+8\sqrt{7657}}{2*-12}=\frac{-700+8\sqrt{7657}}{-24} $
| 5=263-x | | d-2+3=-2 | | -2(x+4)=-3x-8 | | x^2−18x+81=49 | | 2p-1=-10+p | | 3t2=–6 | | 4x+5=3x+4= | | 14x+6=2(5×+3) | | 2x+5=11* | | 59+2x+1+4x-3=180 | | 2(d-7)-10=-8 | | 3z+1=1+3z | | X^2+4x-19=2 | | 105x+9.50=1.25x+14.75 | | 150=-x+288 | | |2m-2|=8 | | v+1=17 | | -7x-27=-15x+5 | | -3(7u-3)+9u=-2(u+3) | | 315=7(5-5p) | | z2+2=–3 | | 7y-36=56 | | -4r+13=8r-11 | | 8-10d=5-9d | | a-62/6=5 | | -4r+24=8r | | t−129=74 | | -4(-5v+7)-5v=3(v-9)-4 | | 28=8+4p | | c+731=976 | | X(x/3)=972 | | 3s=507 |