40+(x-20)+1/3x+(x-10)=360

Simple and best practice solution for 40+(x-20)+1/3x+(x-10)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40+(x-20)+1/3x+(x-10)=360 equation:



40+(x-20)+1/3x+(x-10)=360
We move all terms to the left:
40+(x-20)+1/3x+(x-10)-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
(x-20)+1/3x+(x-10)-320=0
We get rid of parentheses
x+1/3x+x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 8+3p=-2 | | 1y/2=15 | | -4(u-1)=(1-2u)-6 | | 6x-7+3x=65 | | -3x-9+15x=-45 | | 2^(n-1)=256 | | 4x+8x=12x-1 | | x23=72=12+x2 | | 15x-3=7+13X | | 3/5k+1/10=1/2k+1 | | 2x+6.50=16.43 | | 3(4x+8)=-15+27 | | 5(y+1)-y=(y-1)+9 | | 29x+3=29x+3 | | 9x+8-4x=28 | | 2a+4a(a-1)=1+3(2a+1) | | (y-8)-(y+4)=7y | | 7a+4-10=+8+9 | | 8-3x=5x-16+x | | c=38.65+0.50 | | 3r+7=2r+10 | | 8x+1-5=16 | | b/8−-23=29 | | 20-2=3x | | 8.5-0.2x=7.5 | | 31x-3=90 | | b8− -23=29 | | 5x=16x | | 8(-n)=2n | | 2h/18=36 | | 6.4+2.1(z-2)=8.8 | | 2x+8/3=6 |

Equations solver categories