3/5k+1/10=1/2k+1

Simple and best practice solution for 3/5k+1/10=1/2k+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5k+1/10=1/2k+1 equation:



3/5k+1/10=1/2k+1
We move all terms to the left:
3/5k+1/10-(1/2k+1)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 2k+1)!=0
k∈R
We get rid of parentheses
3/5k-1/2k-1+1/10=0
We calculate fractions
20k^2/100k^2+60k/100k^2+(-50k)/100k^2-1=0
We multiply all the terms by the denominator
20k^2+60k+(-50k)-1*100k^2=0
Wy multiply elements
20k^2-100k^2+60k+(-50k)=0
We get rid of parentheses
20k^2-100k^2+60k-50k=0
We add all the numbers together, and all the variables
-80k^2+10k=0
a = -80; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-80)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-80}=\frac{-20}{-160} =1/8 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-80}=\frac{0}{-160} =0 $

See similar equations:

| 2x+6.50=16.43 | | 3(4x+8)=-15+27 | | 5(y+1)-y=(y-1)+9 | | 29x+3=29x+3 | | 9x+8-4x=28 | | 2a+4a(a-1)=1+3(2a+1) | | (y-8)-(y+4)=7y | | 7a+4-10=+8+9 | | 8-3x=5x-16+x | | c=38.65+0.50 | | 3r+7=2r+10 | | 8x+1-5=16 | | b/8−-23=29 | | 20-2=3x | | 8.5-0.2x=7.5 | | 31x-3=90 | | b8− -23=29 | | 5x=16x | | 8(-n)=2n | | 2h/18=36 | | 6.4+2.1(z-2)=8.8 | | 2x+8/3=6 | | 3x5+264=0 | | 3(a-6=-5a-(7+3a) | | 84=7(h+8) | | 3x^2−7x=4x−8 | | 84=6(f+6) | | Y=50+6x | | 4x+-9+19=8x−14 | | p/3+10=13 | | 23-c(2c+3)=2(c+5)+c | | -8(-4+4n)=8(n+6) |

Equations solver categories