4/x-1+6/3x+1=13/3x+1

Simple and best practice solution for 4/x-1+6/3x+1=13/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/x-1+6/3x+1=13/3x+1 equation:



4/x-1+6/3x+1=13/3x+1
We move all terms to the left:
4/x-1+6/3x+1-(13/3x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We add all the numbers together, and all the variables
4/x+6/3x-(13/3x+1)=0
We get rid of parentheses
4/x+6/3x-13/3x-1=0
We calculate fractions
12x/3x^2+(-13x+6)/3x^2-1=0
We multiply all the terms by the denominator
12x+(-13x+6)-1*3x^2=0
Wy multiply elements
-3x^2+12x+(-13x+6)=0
We get rid of parentheses
-3x^2+12x-13x+6=0
We add all the numbers together, and all the variables
-3x^2-1x+6=0
a = -3; b = -1; c = +6;
Δ = b2-4ac
Δ = -12-4·(-3)·6
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{73}}{2*-3}=\frac{1-\sqrt{73}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{73}}{2*-3}=\frac{1+\sqrt{73}}{-6} $

See similar equations:

| -7(-a+4)=-84 | | 2x+5+2x+8=83 | | 1/22x=10x-9.5 | | -8-0.5y+2y=-8 | | 4x+1.5=3x−3+2. | | 1x+2x+3x-12=180 | | -8-1/2y+2y=-8 | | 3z=5.1 | | 5(6n-4)=-230 | | 2g+3(-7+4g=1-g | | 5/2x+1-8x/2x-1=-4 | | 17x+7=9x | | 13=3u-8 | | 3^2x+1-28*3^x+27=0 | | x+1/3=81/4 | | 1+6(4v-2)=109 | | 4-7n-6=-(8n+4)+2+n | | (-7a+6)=-16-7a | | 5x-8=40x+13 | | 2/3+1/2x=2x | | v+2.4=2.39 | | -2.3-9.2=3x-0.7x | | 1−5x=4x+12 | | -4(k+7)=40 | | -42+6y=42 | | 1x+1x+4x=180 | | -2x+37+x-5=180 | | 192=-w+281 | | -2x+37=x-5=180 | | 6+(k/2)=9 | | -3n/6=2/6 | | x+112+73+90=360 |

Equations solver categories