4/5x-8=18/20x+5

Simple and best practice solution for 4/5x-8=18/20x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x-8=18/20x+5 equation:



4/5x-8=18/20x+5
We move all terms to the left:
4/5x-8-(18/20x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 20x+5)!=0
x∈R
We get rid of parentheses
4/5x-18/20x-5-8=0
We calculate fractions
80x/100x^2+(-90x)/100x^2-5-8=0
We add all the numbers together, and all the variables
80x/100x^2+(-90x)/100x^2-13=0
We multiply all the terms by the denominator
80x+(-90x)-13*100x^2=0
Wy multiply elements
-1300x^2+80x+(-90x)=0
We get rid of parentheses
-1300x^2+80x-90x=0
We add all the numbers together, and all the variables
-1300x^2-10x=0
a = -1300; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-1300)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-1300}=\frac{0}{-2600} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-1300}=\frac{20}{-2600} =-1/130 $

See similar equations:

| -3(2x-(x+4)=6-4x | | −2(-4+6x)=1−3x+2−3(x+9) | | 7p+3=3p-12+p | | 7(w+6)=49 | | 6+3x-39=180 | | Y=-10x+216 | | -2q2+-9q+-4=0 | | 210=7x=43 | | 4(w+6)=36 | | 253=7x-43 | | x^2-x-1=-6x-1 | | -11x+27x-6.8=5.2 | | 253=7x=43 | | -4(x-4)=-16 | | (2x+2)+(2x-7)+x=180 | | 2x+13-8x-41=180 | | 3+x-8/3=0 | | 71+(4x-2)=90 | | (2x)+(3x)=135 | | 16-x-1=4x-2x | | p/18=20 | | -5+2k=7 | | 3-(2p+7)=5(1-p) | | 16x-3x-8=3x-2x | | -96=8k | | 16p2−8p+1=0 | | -8r-3=3r+41 | | 2x+13+8x-41=180 | | 8x-38=46-6 | | 7X-43=21o | | x^=36/49 | | 2(x-10)+14=-30 |

Equations solver categories