If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5x-7+1/3x+2=4/5x+9
We move all terms to the left:
4/5x-7+1/3x+2-(4/5x+9)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+9)!=0We add all the numbers together, and all the variables
x∈R
4/5x+1/3x-(4/5x+9)-5=0
We get rid of parentheses
4/5x+1/3x-4/5x-9-5=0
We calculate fractions
(-12x+4)/15x^2+5x/15x^2-9-5=0
We add all the numbers together, and all the variables
(-12x+4)/15x^2+5x/15x^2-14=0
We multiply all the terms by the denominator
(-12x+4)+5x-14*15x^2=0
We add all the numbers together, and all the variables
5x+(-12x+4)-14*15x^2=0
Wy multiply elements
-210x^2+5x+(-12x+4)=0
We get rid of parentheses
-210x^2+5x-12x+4=0
We add all the numbers together, and all the variables
-210x^2-7x+4=0
a = -210; b = -7; c = +4;
Δ = b2-4ac
Δ = -72-4·(-210)·4
Δ = 3409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{3409}}{2*-210}=\frac{7-\sqrt{3409}}{-420} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{3409}}{2*-210}=\frac{7+\sqrt{3409}}{-420} $
| 3w=2w+30 | | w-4.1=8.22 | | 1.1=17x-11 | | 7+-3*t=5+t | | 11j−3j=8 | | v-7.89=2.7 | | y=2(3-5)^2-3 | | 5x-3+4(2x-5)=7x+7 | | (6x-19)+(3x+7)+84=180 | | 0=-200x^2+2500x-900 | | 6x-5=-9+4x | | 0=-200x^2-2500x-900 | | 7-8(1+3b)=26 | | 7y-(-6)=0 | | -5x-200=0 | | 340-5x-(540)=0 | | 6*x=0.48 | | -7x-12=4(-2x+8) | | 6-5x=59 | | C=5h+2 | | 2x+5x+3=-14-x | | -7a-12=4(-2a+8 | | -2−8u=-10−8u | | -2.4t=14.4 | | 340-5x=540 | | -15=3(6a-9) | | 1/2(28+2x)=5(x-2 | | 80=d+14 | | 3x+10=4x/3 | | 250-5x+90=540 | | 125-5x+125+90=540 | | 5x+4(2x+-5)-(7x+7)-3=0 |