If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5x-5/6+7/6x+1/5=1
We move all terms to the left:
4/5x-5/6+7/6x+1/5-(1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 6x!=0determiningTheFunctionDomain 4/5x+7/6x-1-5/6+1/5=0
x!=0/6
x!=0
x∈R
We calculate fractions
864x/5400x^2+875x/5400x^2+(-625x)/5400x^2+216x/5400x^2-1=0
We multiply all the terms by the denominator
864x+875x+(-625x)+216x-1*5400x^2=0
We add all the numbers together, and all the variables
1955x+(-625x)-1*5400x^2=0
Wy multiply elements
-5400x^2+1955x+(-625x)=0
We get rid of parentheses
-5400x^2+1955x-625x=0
We add all the numbers together, and all the variables
-5400x^2+1330x=0
a = -5400; b = 1330; c = 0;
Δ = b2-4ac
Δ = 13302-4·(-5400)·0
Δ = 1768900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1768900}=1330$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1330)-1330}{2*-5400}=\frac{-2660}{-10800} =133/540 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1330)+1330}{2*-5400}=\frac{0}{-10800} =0 $
| 6^(1-2x)=7^x | | 2x+5-6x=12 | | 4x+12x=5+3 | | 7/9=2/5+b | | 7z-6=X(z-2)+Y(z) | | 4x–4=-x–1 | | 6x^2+24x=-4 | | (n-9)(n=5)= | | 4/5+-5/6+7/6x+1/5=1 | | 30/x=2 | | 7(6+z)/6=-z | | 3(x-8)=-60 | | 3(x+2)=4(2x-1) | | x^2-4(x)(2)=0 | | -7/12s=-2/3 | | -6.1+5.5x=9.7 | | (2x+3)^2=1 | | 4+2x/7+3-x/2=5/14 | | -2h=-12.46 | | -9+5k=21 | | -15g=3.36 | | 0,2x+5=-0,7x+1,5 | | -8+9k=19 | | 4=1/8(3x+16) | | -5.6=0.08m | | 7z-6=z(A1+A2)-2A | | 15x+47-3x-54=84 | | -17x+15x=-15 | | 2k-8=12 | | 5k+5=14+2k | | 1=k/3 | | 13/7n=13/21 |