7z-6=X(z-2)+Y(z)

Simple and best practice solution for 7z-6=X(z-2)+Y(z) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7z-6=X(z-2)+Y(z) equation:



7z-6=z(z-2)+(z)
We move all terms to the left:
7z-6-(z(z-2)+(z))=0
We calculate terms in parentheses: -(z(z-2)+z), so:
z(z-2)+z
We add all the numbers together, and all the variables
z+z(z-2)
We multiply parentheses
z^2+z-2z
We add all the numbers together, and all the variables
z^2-1z
Back to the equation:
-(z^2-1z)
We get rid of parentheses
-z^2+7z+1z-6=0
We add all the numbers together, and all the variables
-1z^2+8z-6=0
a = -1; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·(-1)·(-6)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*-1}=\frac{-8-2\sqrt{10}}{-2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*-1}=\frac{-8+2\sqrt{10}}{-2} $

See similar equations:

| 4x–4=-x–1 | | 6x^2+24x=-4 | | (n-9)(n=5)= | | 4/5+-5/6+7/6x+1/5=1 | | 30/x=2 | | 7(6+z)/6=-z | | 3(x-8)=-60 | | 3(x+2)=4(2x-1) | | x^2-4(x)(2)=0 | | -7/12s=-2/3 | | -6.1+5.5x=9.7 | | (2x+3)^2=1 | | 4+2x/7+3-x/2=5/14 | | -2h=-12.46 | | -9+5k=21 | | -15g=3.36 | | 0,2x+5=-0,7x+1,5 | | -8+9k=19 | | 4=1/8(3x+16) | | -5.6=0.08m | | 7z-6=z(A1+A2)-2A | | 15x+47-3x-54=84 | | -17x+15x=-15 | | 2k-8=12 | | 5k+5=14+2k | | 1=k/3 | | 13/7n=13/21 | | 5k+5=14 | | 7z-6=(A1) | | 4z+1/9=5z+5/9 | | -5+5k=30 | | 12=8x+6 |

Equations solver categories