If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/(m+2)+6=3m
We move all terms to the left:
4/(m+2)+6-(3m)=0
Domain of the equation: (m+2)!=0We add all the numbers together, and all the variables
We move all terms containing m to the left, all other terms to the right
m!=-2
m∈R
-3m+4/(m+2)+6=0
We multiply all the terms by the denominator
-3m*(m+2)+6*(m+2)+4=0
We multiply parentheses
-3m^2-6m+6m+12+4=0
We add all the numbers together, and all the variables
-3m^2+16=0
a = -3; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-3)·16
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-3}=\frac{0-8\sqrt{3}}{-6} =-\frac{8\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-3} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-3}=\frac{0+8\sqrt{3}}{-6} =\frac{8\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-3} $
| -23=-2x-13 | | f/21=25 | | (4x-10)^=90 | | (7x-3)^2=6 | | 4w-18=6 | | -11=-11a+36 | | 5k-24=11 | | 6/2+n/3=46 | | –6m=6−7m | | y=1-(2*9) | | 2/3(4-6)=5n-43 | | z/8+69=76 | | 3(w-2)+3,w=5 | | 4(x+3)-4=8(1/2x=1) | | –3k+9k=6k | | 10x+3=3(x-6)-8x | | 1.3y+64.2=2.7y+12.82 | | 9k-(-6)=96 | | 4x+7=4x-18 | | 8(u+7)=72 | | 2x-+6=12 | | 8p-17=15 | | 2−6f=–40 | | -2(2y-18)-3y=-6 | | 1/3x+4=26 | | 5t-38=32 | | 18+2t=86 | | −14+7z=11z−11 | | w/2+19=27 | | 4w+7=4w-18 | | 180=(3x-10)+(7x-10) | | 6(x+11)x=-6 |