4/(2-x)+x=4

Simple and best practice solution for 4/(2-x)+x=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/(2-x)+x=4 equation:



4/(2-x)+x=4
We move all terms to the left:
4/(2-x)+x-(4)=0
Domain of the equation: (2-x)!=0
We move all terms containing x to the left, all other terms to the right
-x!=-2
x!=-2/-1
x!=+2
x∈R
We add all the numbers together, and all the variables
4/(-1x+2)+x-4=0
We add all the numbers together, and all the variables
x+4/(-1x+2)-4=0
We multiply all the terms by the denominator
x*(-1x+2)-4*(-1x+2)+4=0
We multiply parentheses
-1x^2+2x+4x-8+4=0
We add all the numbers together, and all the variables
-1x^2+6x-4=0
a = -1; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·(-1)·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*-1}=\frac{-6-2\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*-1}=\frac{-6+2\sqrt{5}}{-2} $

See similar equations:

| 2x+50-x=150 | | 3a2=-5 | | 4-2x+13=10-9x+9 | | 2.7-(4.2-1.2x)=6.3 | | x+x+30°=90° | | 4*(0,2k-0,3)=1,3*(k-1/2) | | 43=24+y | | 1/3y+9=18 | | 2/7+6y=3*(y-4/21) | | 100/20=280/y | | 3.5xx2.5x=100 | | 6/5(10+5t)+1/3(9t-6)=8+1/2(4t-2) | | 6x-7=-2x-3 | | X+2/3-x+1/2=x-3/4-2 | | 6x-7=-2x-3- | | 2.5y+67.8=0.5y-2.2 | | Z/2-z/7+31=7z | | 3.4t-1.7t=8.5 | | 9¼=x-3½ | | 2(y/6-2)+2y=10 | | 3⋅(x-2)=12 | | 3b-1=2b+1 | | 5(x-7)=7x–5 | | 8.x+3=5.x+6 | | 11.x-5=0 | | 11.x-5=11 | | (2+x)^2=6x+4 | | 5.x-3=2x-102 | | -5x^2+12x-17=0 | | -1=3x+11 | | 1.5x-6.5=53.5 | | 4=12.65*x |

Equations solver categories