If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+5.8t-21=0
a = 4.9; b = 5.8; c = -21;
Δ = b2-4ac
Δ = 5.82-4·4.9·(-21)
Δ = 445.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.8)-\sqrt{445.24}}{2*4.9}=\frac{-5.8-\sqrt{445.24}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.8)+\sqrt{445.24}}{2*4.9}=\frac{-5.8+\sqrt{445.24}}{9.8} $
| -20y-40=-60 | | -3x+10=-6x+12 | | -10+5m/5=4 | | 5(x-2)=2(x-13) | | -20y=-40÷ | | 7(4p-6)+7=-175 | | X=35y=195 | | 4.9t2-5.8t-21=0 | | k=2/7 | | X=5y=95 | | c=100+100c | | 6y-2=14y+30 | | -3x(2x-8)=6x+24 | | z+1/2z=90 | | K²-7k+4=0 | | 58-3x=4 | | −4(10+3x)−(x+8)=−9. | | 119=-1-4(4v-2) | | z/4+-11=-12 | | 8+3m=-3m+2m | | -193=r+6(5r+4) | | (2m+6)/2=4m+6 | | 23-2x+39=9x-5 | | (x-8)+3=11 | | h/4+-72=-62 | | Z/3-3z/10=4/15 | | 8x-6-6x+8=180 | | r/5-24=-16 | | 3h+-6h+20=92 | | 8x-6x6x+8=180 | | 2x-1=3x+16 | | −4 |