If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t(t-4)-103=0
We multiply parentheses
4t^2-16t-103=0
a = 4; b = -16; c = -103;
Δ = b2-4ac
Δ = -162-4·4·(-103)
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{119}}{2*4}=\frac{16-4\sqrt{119}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{119}}{2*4}=\frac{16+4\sqrt{119}}{8} $
| 8(7y-7)=9(5y+8) | | 3.5(2x-6)=-49.7 | | 7c=-35 | | 4.9t^2-19.6t-103=0 | | -14-7v=v+2-6v | | 20=+10(1+0.1x) | | 5d-$10.00-$4.00=$13.50 | | •3a+5=11 | | 2m=5(m+3)-3 | | 4(m+7)=2(m-8) | | -6(-2x-13)=-30 | | 2/9(3x-4)=1/3(10x-6) | | 4(m+7)=2(m-8) | | —9y=-9 | | 12=6+s | | -3m=-4m+2 | | 4y+6=45 | | 2+2w+6=228 | | 41y+5−43y=2 | | -3m=-4m | | 2x+41=17 | | -0.2(k-4.2)=2 | | 20=0.10x | | -3x-6x=-2-7 | | 10x+5-5x=6x-6 | | 3x–8=3(x–4)+1 | | (6x+11)+(3x+29)+(9x+6)=180 | | -22=-4m+6 | | -5(2x+3)=4x+x | | 19.6t-4.9t^2+103=0 | | 9(y-8)=9 | | 3(5x+2)=4(7x+3) |