If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9=(60.062+4h*h)/8h
We move all terms to the left:
4.9-((60.062+4h*h)/8h)=0
Domain of the equation: 8h)!=0We add all the numbers together, and all the variables
h!=0/1
h!=0
h∈R
-((4h*h+60.062)/8h)+4.9=0
We multiply all the terms by the denominator
-((4h*h+60.062)+(4.9)*8h)=0
We calculate terms in parentheses: -((4h*h+60.062)+(4.9)*8h), so:We get rid of parentheses
(4h*h+60.062)+(4.9)*8h
We multiply parentheses
(4h*h+60.062)+39.2h
We get rid of parentheses
4h*h+39.2h+60.062
We add all the numbers together, and all the variables
39.2h+4h*h+60.062
Wy multiply elements
4h^2+39.2h+60.062
Back to the equation:
-(4h^2+39.2h+60.062)
-4h^2-39.2h-60.062=0
a = -4; b = -39.2; c = -60.062;
Δ = b2-4ac
Δ = -39.22-4·(-4)·(-60.062)
Δ = 575.648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39.2)-\sqrt{575.648}}{2*-4}=\frac{39.2-\sqrt{575.648}}{-8} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39.2)+\sqrt{575.648}}{2*-4}=\frac{39.2+\sqrt{575.648}}{-8} $
| 7x-26=5x10 | | -20=-2(y+6) | | p+9/9=4 | | 5n-7=20+2n | | 4.9+8h=60.062+4*h*h | | (10x-3)/3+(5x+)/4=5 | | 3-(2c-4)=8 | | 10(32-7y)+11y=128 | | 3(u-2)-5u=-2(u+2)= | | 7-4x+3=x+6-3x | | 4m+8=4m-11 | | 6(4x+1)=40+7x | | 25+5n=7+15n | | n2–50n=0 | | -4h^2+4.9*8h=60.062 | | x+0.4/3.2=x/2 | | (33b-5)-8(4b+4)=-5 | | Y=(2/3x-25/3) | | 4.9*8h=60.062+4*h*h | | 6-(4y-2)=1-5y | | 5.5x+50=180 | | X/7x=63 | | y=17(4+10)-8*10/7-10 | | 3x+19=24−3 | | 3(x+5=33 | | 9x+9=4x+5 | | 22/4x+50=180 | | 8x/6=72/45 | | 3(y-9)=2(7+y) | | 70(x+2)=100x | | x(x-7)=40 | | 3(c-9)=2c-7 |