If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x-10)+3(x+4)=(7/2)(-2x)
We move all terms to the left:
4(x-10)+3(x+4)-((7/2)(-2x))=0
Domain of the equation: 2)(-2x))!=0We add all the numbers together, and all the variables
x∈R
4(x-10)+3(x+4)-((+7/2)(-2x))=0
We multiply parentheses
4x+3x-((+7/2)(-2x))-40+12=0
We multiply parentheses ..
-((-14x^2))+4x+3x-40+12=0
We calculate terms in parentheses: -((-14x^2)), so:We add all the numbers together, and all the variables
(-14x^2)
We get rid of parentheses
-14x^2
Back to the equation:
-(-14x^2)
-(-14x^2)+7x-28=0
We get rid of parentheses
14x^2+7x-28=0
a = 14; b = 7; c = -28;
Δ = b2-4ac
Δ = 72-4·14·(-28)
Δ = 1617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1617}=\sqrt{49*33}=\sqrt{49}*\sqrt{33}=7\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7\sqrt{33}}{2*14}=\frac{-7-7\sqrt{33}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7\sqrt{33}}{2*14}=\frac{-7+7\sqrt{33}}{28} $
| 6+2x+9=24+32+(6x+12) | | 4f+6=46 | | 43/4/51/2=d/161/2 | | 9r+4=9+9r | | -7(x+3)+4x+5=8x+8 | | 48=-3x2+24x | | 2x/4+5/8=4x+5/10 | | 5n^2+6n+9=0 | | 1x+1=1x+4 | | 7x+12=5x+30 | | -3x+8+×=5-2x+3 | | x-11/12=-7/15 | | 5(3^2x+2)=31 | | 2x-1-5x=-3 | | 11=c/2 | | 2a+a=150 | | (5x2)3=x | | 1 = q/4− 2 | | 1 = q4− 2 | | 2x-15x=-31 | | 6x÷2=1B | | 4^x=2/3x+5 | | 26=2(m-6)+4(4-6m) | | c2=8c | | 14x-10=88 | | 3(6n+8)+6(n-1)=42 | | 5(z+3)+2(2-1)=3z-11 | | T(d)=30+2d-2 | | 4m+3(6m-2)=12-2m | | -4(7b-7)=112 | | 9x+7=6x+0 | | 3x+1=9x+0 |