4(x+2)(3x-7)=22-65

Simple and best practice solution for 4(x+2)(3x-7)=22-65 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x+2)(3x-7)=22-65 equation:



4(x+2)(3x-7)=22-65
We move all terms to the left:
4(x+2)(3x-7)-(22-65)=0
We add all the numbers together, and all the variables
4(x+2)(3x-7)-(-43)=0
We add all the numbers together, and all the variables
4(x+2)(3x-7)+43=0
We multiply parentheses ..
4(+3x^2-7x+6x-14)+43=0
We multiply parentheses
12x^2-28x+24x-56+43=0
We add all the numbers together, and all the variables
12x^2-4x-13=0
a = 12; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·12·(-13)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{10}}{2*12}=\frac{4-8\sqrt{10}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{10}}{2*12}=\frac{4+8\sqrt{10}}{24} $

See similar equations:

| 4(x+2)(3x-7)=22-65 | | n^2=2500 | | n^2=2500 | | n^2=2500 | | n^2=2500 | | 3(4c-6)=4c+2(4c-9 | | 60x=50x+30 | | 60x=50x+30 | | X=100-0.5x^2×x | | 60x=50x+30 | | 60x=50x+30 | | 60x=50x+30 | | 60x=50x+30 | | 3(x-7)+9x=4(3x+12) | | 0.69+35x=1.39x | | 0.69+35x=1.39x | | 9u=6u+3 | | 9u=6u+3 | | 3x18=6x+27 | | 3x18=6x+27 | | -8a=-90 | | 2x+34=9-36 | | 2x+34=9-36 | | 2x+34=9-36 | | B(x)=9.3 | | x-8+3x-11+x+8+x+2x+7=540 | | x-8+3x-11+x+8+x+2x+7=540 | | 1/2x-2/5=-2 | | 1/2x-2/5=-2 | | (7x-9)=(4x-90) | | (7x-9)=(4x-90) | | (7x-9)=(4x-90) |

Equations solver categories