4(n2+5)=60

Simple and best practice solution for 4(n2+5)=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(n2+5)=60 equation:



4(n2+5)=60
We move all terms to the left:
4(n2+5)-(60)=0
We add all the numbers together, and all the variables
4(+n^2+5)-60=0
We multiply parentheses
4n^2+20-60=0
We add all the numbers together, and all the variables
4n^2-40=0
a = 4; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·4·(-40)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*4}=\frac{0-8\sqrt{10}}{8} =-\frac{8\sqrt{10}}{8} =-\sqrt{10} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*4}=\frac{0+8\sqrt{10}}{8} =\frac{8\sqrt{10}}{8} =\sqrt{10} $

See similar equations:

| 169=21-v | | 9h-14+5h+8=90 | | -1x=-1x-1 | | 6r+4=r+74 | | 6y^2+22y-12=5y | | 5-2t=35 | | 3x-14-4x=7 | | (12x-7)+(9x+2)=x | | 5x+2–x=−4 | | 1/2x+5=1/6x+6 | | 1376=300+0.04s | | -2=-(n-8)) | | H(-3)=4x-7 | | |2x+8|=-19 | | n-(-17)=2 | | 3x-4+2x=4x-6+x-2 | | -9(w+5)=-7w-25 | | 7x(1-8x)=0 | | 12x+8=6x+12+2 | | X=18+-5y | | x+2.9=1.87+4.8x+6.5x | | D(1376)=300+0.04s | | 5x-60=1 | | 6v=17 | | 5x+10=+45 | | -2x+Y=-18 | | (2x+14)=(5x-37) | | -7x+19=-3(x+7) | | 5(3x+55)=4(x+33) | | 2m/3=m+5 | | -6(c+8)+12=6 | | -3u-5=7(u-5) |

Equations solver categories