4(3x-12)=14-(5x+8)x=3+3/17

Simple and best practice solution for 4(3x-12)=14-(5x+8)x=3+3/17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3x-12)=14-(5x+8)x=3+3/17 equation:



4(3x-12)=14-(5x+8)x=3+3/17
We move all terms to the left:
4(3x-12)-(14-(5x+8)x)=0
We multiply parentheses
12x-(14-(5x+8)x)-48=0
We calculate terms in parentheses: -(14-(5x+8)x), so:
14-(5x+8)x
determiningTheFunctionDomain -(5x+8)x+14
We multiply parentheses
-5x^2-8x+14
Back to the equation:
-(-5x^2-8x+14)
We get rid of parentheses
5x^2+8x+12x-14-48=0
We add all the numbers together, and all the variables
5x^2+20x-62=0
a = 5; b = 20; c = -62;
Δ = b2-4ac
Δ = 202-4·5·(-62)
Δ = 1640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1640}=\sqrt{4*410}=\sqrt{4}*\sqrt{410}=2\sqrt{410}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{410}}{2*5}=\frac{-20-2\sqrt{410}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{410}}{2*5}=\frac{-20+2\sqrt{410}}{10} $

See similar equations:

| 2/3x=-2/3x | | 4x=-28 | | -7-16m+17=2(-8m+5) | | 8+x÷4=16 | | 5+2(3x-1)=4x+5 | | e/2-17=0 | | 10-6j=-10+4j | | 5x+8=2x+3(x+5) | | 7(2-x)=5x+2 | | -2(18-3b)=-3(-2b+12) | | 0.5x+16=35 | | 4x+34=45-2x | | 8x+4x+18−6=180 | | 5x+8=2x+3(x+50 | | 39(2y+1)=6y+3 | | x-2(11-3x)+6x=-93 | | 2(x+5)=−4x−8 | | 17.57+12.2g=12.2g+17.57 | | -3n+6=-9n | | x2+5x+11x=14 | | 9x+17=5x+41 | | x^2+9x+14=0} | | 4 = 2 9 a | | 2b/5+6/2=10 | | 3(x−2)+7x=1/2(6x−2) | | 2x+31=2x | | 10q–15=5(2q+4) | | 19=2(1)+b | | 3(x−2)+7x=12(6x−2) | | 84=-4r | | -1/2(6x+12)=-3x-6 | | n(n-3)=132 |

Equations solver categories