4(3-u)/u=22+2u

Simple and best practice solution for 4(3-u)/u=22+2u equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3-u)/u=22+2u equation:



4(3-u)/u=22+2u
We move all terms to the left:
4(3-u)/u-(22+2u)=0
Domain of the equation: u!=0
u∈R
We add all the numbers together, and all the variables
4(-1u+3)/u-(2u+22)=0
We get rid of parentheses
4(-1u+3)/u-2u-22=0
We multiply all the terms by the denominator
4(-1u+3)-2u*u-22*u=0
We add all the numbers together, and all the variables
-22u+4(-1u+3)-2u*u=0
We multiply parentheses
-22u-4u-2u*u+12=0
Wy multiply elements
-2u^2-22u-4u+12=0
We add all the numbers together, and all the variables
-2u^2-26u+12=0
a = -2; b = -26; c = +12;
Δ = b2-4ac
Δ = -262-4·(-2)·12
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{193}}{2*-2}=\frac{26-2\sqrt{193}}{-4} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{193}}{2*-2}=\frac{26+2\sqrt{193}}{-4} $

See similar equations:

| 462.29x=230+0.86 | | 4+2(x+-8)=44 | | 8(4x-4)=-32+2x | | 13x-11+2x-1=9x | | 5g+g-9=7 | | x(4x-3)(x-5)=0 | | 6+34=-5(7x-8) | | 5x-11+3x+17=Y | | -3w-15=0 | | 3n-7=1-5n | | 12x+4=4(6x-2) | | 12z=206 | | -3x=3x^2-3x | | 5x-11=3x=17 | | -4x+32=32-4 | | 3t+12=25.5 | | 12=18–(-3x) | | .25(a+10)=5 | | e8=216 | | -1/4n+1=1 | | F(n)=8n+-3 | | 79+q=65 | | 3*(w+2)+5*(w+3)=29 | | 13(13x-10)+10x=2278 | | 2(5x+9)=-47+55 | | (t)-(2)=6t^2-5t+4 | | 7x/12=3/5 | | -2u+16=6 | | 8x-51=2x+14 | | x+9=-3x+21 | | 21=x+20+x+17 | | 7x=+5-4x-15 |

Equations solver categories