4(2/5)x=22

Simple and best practice solution for 4(2/5)x=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2/5)x=22 equation:



4(2/5)x=22
We move all terms to the left:
4(2/5)x-(22)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4(+2/5)x-22=0
We multiply parentheses
8x^2-22=0
a = 8; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·8·(-22)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*8}=\frac{0-8\sqrt{11}}{16} =-\frac{8\sqrt{11}}{16} =-\frac{\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*8}=\frac{0+8\sqrt{11}}{16} =\frac{8\sqrt{11}}{16} =\frac{\sqrt{11}}{2} $

See similar equations:

| -10r=2-9r | | 3p+9=2(p | | -@0r=2-9r | | x^2+50x+2360=0 | | 8(x+3)-2=-4(x+6) | | -10=9-z | | 42/5x=22 | | (2y=8)+3y=12 | | 6^2x-6=14 | | 2^2x-6=14 | | 3(4+y=3(-2+y) | | (2y=8) | | −4(2x+5)+2x+3=-11 | | -6(x=2)-11+24+7 | | x^2+50x+856=0 | | 6(k-2)-5=6k-(5k-3) | | X+6/3-2x+9/5=1 | | 10c^2+14c-12=0 | | b−62=13 | | 5x-17=1232 | | P(–3)=x4–2x3–4x+4. | | 21/2=105/m | | g+4=98 | | 6/2=9/m | | u+74=87 | | 3y+4+7y=24 | | k6=7 | | 19-g;=15 | | P=(x5.5) | | 7-1=3x+1-1 | | 5x^2-9=2x-7^6 | | x-1.1=-3.8 |

Equations solver categories