4(1-x)3x=-2(x+1)

Simple and best practice solution for 4(1-x)3x=-2(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(1-x)3x=-2(x+1) equation:



4(1-x)3x=-2(x+1)
We move all terms to the left:
4(1-x)3x-(-2(x+1))=0
We add all the numbers together, and all the variables
4(-1x+1)3x-(-2(x+1))=0
We multiply parentheses
-12x^2+12x-(-2(x+1))=0
We calculate terms in parentheses: -(-2(x+1)), so:
-2(x+1)
We multiply parentheses
-2x-2
Back to the equation:
-(-2x-2)
We get rid of parentheses
-12x^2+12x+2x+2=0
We add all the numbers together, and all the variables
-12x^2+14x+2=0
a = -12; b = 14; c = +2;
Δ = b2-4ac
Δ = 142-4·(-12)·2
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{73}}{2*-12}=\frac{-14-2\sqrt{73}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{73}}{2*-12}=\frac{-14+2\sqrt{73}}{-24} $

See similar equations:

| 3.9x-5.27=3.7 | | 7/9z=-1/3 | | 2x+2(3+8)=7x+9 | | -24=10(4-3y)+14y | | 28=j-12 | | 6=3(5x+1) | | (1/3)x+1=2 | | 18=v-20 | | 20=v-18 | | -7x+3=4x+6 | | 2=h-7 | | x(x+13)+(x+20)=180 | | 89-(2*16)=x | | 72÷n=9 | | 8h+10=16 | | 73-16=x | | 20x-(6x-3)=87 | | -108=-6(w+8) | | 91+160+80+x=180 | | X-2x+3=3-4x | | 4(3+y)=3(2+y) | | -9(u+7)=-144 | | 6+(g+2)=1 | | 6÷(g+2)=1 | | 180-x+5=2x-10 | | 180-2x-10=×+5 | | 2x-10+x+5=180 | | (x^2-180,000)/(x^2)=0 | | 59x−1−13x=3 | | 6x*12=36 | | 6xx12=36 | | 3x-12=2x-4= |

Equations solver categories