If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-4z-4=0
a = 3; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·3·(-4)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*3}=\frac{-4}{6} =-2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*3}=\frac{12}{6} =2 $
| x-9.8=1.27 | | w+7.73=9.84 | | 5x3+3=x+7 | | -8(x-7)+6=62 | | X/60-x/75=0 | | X/60-x/75=150 | | -0.3x^+2.4x=2.82 | | -8(x-7)+6=67 | | 15x/4500=0 | | 4+2p=10((3)/(5)p-2) | | x^2+2x=7/4 | | 6s-4=8(2+(1)/(4)s) | | 27x^2-168x+36=0 | | -0.3x^+2.4x=0.9 | | -4r+2(r+1)=-r+7(1+6r) | | x-0.75x=15 | | 3(5n+3)-6=-3(1-3n) | | 10+2/3(3-7x)=-1/3x+3 | | 3x+43=61–x | | 3y+0,25=4 | | T(n)=5n^2+8 | | 300x=272 | | 18+2x=-6(-8x-3) | | 3y+1-2=4 | | -7(x-3)-7=4x-30 | | x+33=3(7-x) | | 9.2(x+2.5)=-18.4 | | 2b/4=6=2 | | 38+8a=-6(-8a+7) | | 2.3+10m=7.58 | | 3/4x+15=x | | –1.2x=7.2 |