If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+3z-6=0
a = 3; b = 3; c = -6;
Δ = b2-4ac
Δ = 32-4·3·(-6)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*3}=\frac{-12}{6} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*3}=\frac{6}{6} =1 $
| x*0.8=6.2 | | 71-3x=4x+51 | | 8x-10+7x-3=180 | | 2x-15=11x+2 | | x+5-2x-24=180 | | 6x+8-7x-7=180 | | 3x+5/2=2.4x-3.6/1.2 | | x+8-4x-13=180 | | 3-4x4+3=0 | | 7x+5-9x+5=180 | | (7x+5)9x+3=180 | | (6x-7)+4x-1=180 | | (2/3)^3x-3=(8/27)^3 | | 2x+6x=1.000 | | 40+2k=64 | | 2x/5-1=4x/2+5 | | 5y2-2y-9=0 | | 4x/3=3(2x+1) | | 10k+9k-1=0 | | 15y-6y=8 | | 157=2x+1 | | 2-1a=-1a | | 4(5x+1)=1/2(20x+16)=16 | | 26x-1=2 | | 2.5+2.5c=10 | | 4x-4=-2x-18 | | 12x+20-10x=28 | | 4(x-1)=-2(x-9) | | 99=10b+9 | | -3+x-7+3x=4+x-2 | | 7/3/7/x=126 | | x+5-4x=3+2x-6-4x |