If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+2z-2=0
a = 3; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·3·(-2)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*3}=\frac{-2-2\sqrt{7}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*3}=\frac{-2+2\sqrt{7}}{6} $
| (8x-15)=(4x+5) | | 16-2n=8+14(16n-48) | | 3z2+2z–2=0 | | 2u2+7u–6=0 | | 4q2+8q+4=0 | | 8q2+6q+5=0 | | 5x4=-6 | | 7u2+u-5=0 | | -4x(-4)=16 | | (x−6)=9 | | 16-2n=-8+1/4(16n-48) | | 3(2x+1)/4=9 | | 2=3+z/6 | | 19+1/6h=-29 | | 19=16+d | | 7(m+2.7)=73.5 | | 5=d/2 | | X(x-3)=-x+24 | | -3x(-4)=12 | | 32=-8(q–3) | | 73.5=7(m.2.7) | | 3y2-y+6=0 | | 2z2+4z+2=0 | | -c/2–16=-12 | | 4x2+2x+2=0 | | Y=−3x2+75 | | -c2–16=-12 | | 8v=-96 | | 8z2-4z+2=0 | | 9p2+6p+1=0 | | 6x(-10)=-60 | | 3(2x-4)-6x=28 |