If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7u^2+u-5=0
a = 7; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·7·(-5)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{141}}{2*7}=\frac{-1-\sqrt{141}}{14} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{141}}{2*7}=\frac{-1+\sqrt{141}}{14} $
| -4x(-4)=16 | | (x−6)=9 | | 16-2n=-8+1/4(16n-48) | | 3(2x+1)/4=9 | | 2=3+z/6 | | 19+1/6h=-29 | | 19=16+d | | 7(m+2.7)=73.5 | | 5=d/2 | | X(x-3)=-x+24 | | -3x(-4)=12 | | 32=-8(q–3) | | 73.5=7(m.2.7) | | 3y2-y+6=0 | | 2z2+4z+2=0 | | -c/2–16=-12 | | 4x2+2x+2=0 | | Y=−3x2+75 | | -c2–16=-12 | | 8v=-96 | | 8z2-4z+2=0 | | 9p2+6p+1=0 | | 6x(-10)=-60 | | 3(2x-4)-6x=28 | | d+5/4=3 | | c/6=0 | | -7x+13=24-12x | | k-12/24=22 | | d+54=3 | | c6=0 | | p/5=10/1 | | y2-5y-7=0 |