If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+12z=0
a = 3; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·3·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*3}=\frac{-24}{6} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*3}=\frac{0}{6} =0 $
| x-126=200 | | 1=3u | | 5(d-12)-3=2(-4d=94)+87 | | -10=5/3r+5 | | 45×n=405 | | 60+w=2,400 | | 4x-6+3x-4=90 | | 4x-6+3x-4=180 | | 65-x=0.32x | | *9x-7=-43 | | 10+4x=(x-6)-33 | | 72x-17x=72 | | -x+63=3x+27 | | x-45/8=0 | | 3/2=1.8/m | | 12/3x-4=21/2-x | | -x^2=-80 | | x(2x+8)=192 | | 4^2x-7=256 | | x-12=-79 | | 15x^2-2x-45=0 | | -2(x+3)+3(x+2=16) | | (5x+25)/18=5 | | -2(x+3)+3(x+2)=16 | | 20+8z-7z=30 | | 7=1/3f | | 3x2−18x+12=0 | | -2=-3(5+y)-14 | | 18x^2-30=12x | | 86=7q+4q-2 | | 3(t-10)-t=-8 | | 10z-4z=24 |