If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x+8)=192
We move all terms to the left:
x(2x+8)-(192)=0
We multiply parentheses
2x^2+8x-192=0
a = 2; b = 8; c = -192;
Δ = b2-4ac
Δ = 82-4·2·(-192)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-40}{2*2}=\frac{-48}{4} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+40}{2*2}=\frac{32}{4} =8 $
| 4^2x-7=256 | | x-12=-79 | | 15x^2-2x-45=0 | | -2(x+3)+3(x+2=16) | | (5x+25)/18=5 | | -2(x+3)+3(x+2)=16 | | 20+8z-7z=30 | | 7=1/3f | | 3x2−18x+12=0 | | -2=-3(5+y)-14 | | 18x^2-30=12x | | 86=7q+4q-2 | | 3(t-10)-t=-8 | | 10z-4z=24 | | 84=-9b-3b | | 84=9b-3b | | 9(z+2)-20=43 | | 12=4v-6v | | 12=-65v-6v | | 3(2x-30)=6x-30 | | 8x^2-10=542 | | 5(d-12)-3=2(-4d+94)+87 | | 22=9(5+c)-5 | | 24=6(9+z) | | 2(3x-15)=6x-30 | | 24=6(9+z | | -2z-8z=-70 | | 9p^2+6=-46 | | 3x^2+1-(58)=0 | | X^2+3x-40=40 | | -7=r/2-3 | | 6(x-15)=6x-30 |