If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=2601
We move all terms to the left:
3y^2-(2601)=0
a = 3; b = 0; c = -2601;
Δ = b2-4ac
Δ = 02-4·3·(-2601)
Δ = 31212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31212}=\sqrt{10404*3}=\sqrt{10404}*\sqrt{3}=102\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-102\sqrt{3}}{2*3}=\frac{0-102\sqrt{3}}{6} =-\frac{102\sqrt{3}}{6} =-17\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+102\sqrt{3}}{2*3}=\frac{0+102\sqrt{3}}{6} =\frac{102\sqrt{3}}{6} =17\sqrt{3} $
| n-7=n-6/10 | | 7r+15=12r+5 | | 4b+1=2b-5 | | 7(4w+1)/4=-7 | | x+4x+3x+40=180 | | -63−2y=35 | | (3x+20)+(x-5)+65=180 | | 48m-54=31m-33 | | 6x=15x-360 | | 6+10x=186 | | 7/k=3 | | 7x+2=135 | | 2(n-1)+n=5(2n+3)-2(n+3) | | 15-10k=3 | | 4z/10+8=-1 | | y/2-3=3/4 | | 11m=42 | | 6x+11=61-6x | | 2x+38+12x-54=180 | | 1-9p/19-3p=5/8 | | 3.5424=1.058^x | | 209000/59000=(1.058)^x | | 3m+5/2m+7=5 | | 209000/59000=1.00058^x | | 3(4x+50=33 | | 5b÷23=8 | | 5n+12=62 | | 2(2y-3)=14 | | 2.24+0.41x=5.3 | | 4p-3p-3p-3p+3p*6=26 | | 850+0.3b=30+0.5b | | 22(1+c)=66 |