If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=243
We move all terms to the left:
3y^2-(243)=0
a = 3; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·3·(-243)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54}{2*3}=\frac{-54}{6} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54}{2*3}=\frac{54}{6} =9 $
| 6y2=42 | | -5(2x-23)=2(x-8)-13 | | 4x(-0.5)=-2 | | z=7+1/2 | | 5/6m+7=36 | | 2n+9=n-30 | | n×8=72 | | 3(3q-2)=2(2q+7) | | -4+4w=28 | | 1/2(x-86)=9+7x | | -3^(2x+1)=-27 | | 35+7x=2(-x+5)-20 | | 2=12÷r | | -2(-6x+4)=-152 | | 19+4.50x=14+5.75x | | 3(x+4)+2x=22 | | x-3+5=x+5-3 | | 14x+7=6x+11 | | 14x-5=10x+15 | | 8÷n=8 | | 15x+(8x+5)+11x=180 | | 3-3x-1=2(x-4) | | 14x+4=4x+16 | | 5x2-8=12 | | 5=-3+w/4 | | 24-7y=13 | | F(4)=-4(x+3)-14 | | 5x+30=11x+10 | | x+39/7=4 | | 10x-x=20x-5 | | 2n−4.26=17.04 | | -5/2w+4/3=-7/6w-1 |