-5/2w+4/3=-7/6w-1

Simple and best practice solution for -5/2w+4/3=-7/6w-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/2w+4/3=-7/6w-1 equation:



-5/2w+4/3=-7/6w-1
We move all terms to the left:
-5/2w+4/3-(-7/6w-1)=0
Domain of the equation: 2w!=0
w!=0/2
w!=0
w∈R
Domain of the equation: 6w-1)!=0
w∈R
We get rid of parentheses
-5/2w+7/6w+1+4/3=0
We calculate fractions
288w^2/108w^2+(-270w)/108w^2+126w/108w^2+1=0
We multiply all the terms by the denominator
288w^2+(-270w)+126w+1*108w^2=0
We add all the numbers together, and all the variables
288w^2+126w+(-270w)+1*108w^2=0
Wy multiply elements
288w^2+108w^2+126w+(-270w)=0
We get rid of parentheses
288w^2+108w^2+126w-270w=0
We add all the numbers together, and all the variables
396w^2-144w=0
a = 396; b = -144; c = 0;
Δ = b2-4ac
Δ = -1442-4·396·0
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{20736}=144$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-144}{2*396}=\frac{0}{792} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+144}{2*396}=\frac{288}{792} =4/11 $

See similar equations:

| y=1×+45= | | 3h-5=22* | | -0.4=g/30.9 | | F(-8)=3(-2x+7) | | y=1×+45 | | X+6x+4=11 | | 3mm=I | | r+15=3r+1 | | 9/15=27/p | | -1/3=j-4-10/3 | | 2/3x+15=8 | | 23x+15=8 | | c/6=17 | | -x+8x-155=55 | | 2(3t-­4)=10t-­7 | | 4x+11x-113=172 | | 17/6=c | | 14x-82-10x=34 | | 5x+36=6x-2 | | m/15=12 | | -5x+14x-127=188 | | 7x-5+10=180 | | -x-123+10x=138 | | -119-4x+12x=41 | | 6(3p+4)-2(4p-5)=-6 | | 4(a-50=3(a+4) | | 5(x+7)^(2)=245 | | 2m=66 | | -7i=9i-9i+7 | | 4−8a=−44 | | 7n=9n-2n | | 8/9=15/c |

Equations solver categories