If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=49
We move all terms to the left:
3x^2-(49)=0
a = 3; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·3·(-49)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*3}=\frac{0-14\sqrt{3}}{6} =-\frac{14\sqrt{3}}{6} =-\frac{7\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*3}=\frac{0+14\sqrt{3}}{6} =\frac{14\sqrt{3}}{6} =\frac{7\sqrt{3}}{3} $
| 2x-3x3=5 | | x2+11x-85=0 | | 4-x2=5x | | 2x-3x2=5 | | 2x²+14=86 | | 4-x^=5x | | 2x-3x^=5 | | 2x-3x√=5 | | 2y-4y=40 | | -0.024x^2+0.55x=22.9 | | (6+x)÷3=4+1/4x | | -0.4x=-0.24 | | x²-10×=10 | | 2x+2=106 | | 4/9×x=16/85 | | 4p^-1=64 | | y=(130-170+(40+2y)/2)/2 | | 3b=-9.9 | | r²-10r=17 | | 2y=130-170+2(40+2y)/2 | | x=(40+12)/2 | | -x+276=163 | | -v+135=267 | | -v+135=276 | | 9/e=1/6 | | y=130-170-y+(40+2y)/2+(40+2y)/2 | | 66=251-u | | 10/6=100/d | | -7(y+3)=-28 | | 2(2x-8+8)=56 | | 5/2=15/c | | 10/4=e/34 |