2y=130-170+2(40+2y)/2

Simple and best practice solution for 2y=130-170+2(40+2y)/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y=130-170+2(40+2y)/2 equation:



2y=130-170+2(40+2y)/2
We move all terms to the left:
2y-(130-170+2(40+2y)/2)=0
We add all the numbers together, and all the variables
2y-(130-170+2(2y+40)/2)=0
We multiply all the terms by the denominator
2y*2)-(130+2(2y+40)-170=0
We multiply parentheses
2y*2)-(130+4y+80-170=0
Wy multiply elements
4y^2+4y+80-170=0
We add all the numbers together, and all the variables
4y^2+4y-90=0
a = 4; b = 4; c = -90;
Δ = b2-4ac
Δ = 42-4·4·(-90)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{91}}{2*4}=\frac{-4-4\sqrt{91}}{8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{91}}{2*4}=\frac{-4+4\sqrt{91}}{8} $

See similar equations:

| x=(40+12)/2 | | -x+276=163 | | -v+135=267 | | -v+135=276 | | 9/e=1/6 | | y=130-170-y+(40+2y)/2+(40+2y)/2 | | 66=251-u | | 10/6=100/d | | -7(y+3)=-28 | | 2(2x-8+8)=56 | | 5/2=15/c | | 10/4=e/34 | | 7/7=b/5 | | 3(2x-1)-2(2x-5)=4 | | 3x^2+24x-1152=0 | | 16=v/2+8 | | v-5.9=4.33 | | 3(x+1)+2(x-5)=-12 | | -v/9=26 | | P2—10p—24=0 | | 21=90x | | –8−3k=–k | | 1/4x-1/3x=7 | | 3(2x+3)+2(4x-5)=6 | | 3(2x-3)+2(x+5)=9 | | 8+5m=4m | | 5p+15=30 | | a=7-5 | | 17+(2y+7)=38 | | 8x+x=32 | | 5(7-5x)+10=170 | | 42=8m+13mG |

Equations solver categories